
CSE272: Impact of Text Summarization on Search Results
Omkar Ghanekar
oghaneka@ucsc.edu

Smruthi Pobbathi
spobbath@ucsc.edu

ABSTRACT
Text summarize feature is commonly used in several search engines.
Google uses text summarize algorithm to display the contents of
the documents retrieved in search results page. Several companies
use text summarize feature to display the features of the product
as marketing strategies. Several students use text summarizer tools
to read large documents. In this project, we use text summarizer to
summarize a Wikipedia dump and compare the search results of
large text content and summarized text content. Perform precision,
recall and speed evaluations on both the search results. Our aim
is to see if summarized text can be indexed instead of full text
documents and obtain similar results.

KEYWORDS
dataset, text summarizer, Elasticsearch, fuzzy search, function score,
precision, recall

1 INTRODUCTION
We all interact with applications which uses text summarization.
Many of those applications are for the platform which publishes ar-
ticles on daily news, entertainment, sports. With our busy schedule,
we prefer to read the summary of those article before we decide to
jump in for reading entire article. Reading a summary help us to
identify the interest area, gives a brief context of the story.

In the past decade, summary generation tools have played an
important role in search engine optimization. Most popular search
engines use text summarization methods to improve user expe-
rience. Well where have we seen text summarization? When we
search something on Google, the results page is displayed. This
results page consists of a short summary of the article present in
search results. Many different marketing techniques use this text
summarization tools to provide a brief description of the content
and improve search engine’s ranking. Huge amount of data is being
indexed every second in very powerful search engines. But when
we want to use say Wikipedia offline, it is practically impossible to
store all the data locally and index that data.

So here comes the motivation of our project. We are implement-
ing a search engine for Wikipedia dataset [] that we gathered from
Kaggle. This dataset is a Wikipedia dump from 2020-10-20. The
Wikipedia dataset we used was mostly unstructured with only a
few fields, id, title and description. The aim of text summarization
was to remove redundancy in the massive dataset that we were
searching through. On this unstructured data, we perform an NLP
text summarization algorithm to extract summary of the long text
data. We then index these two datasets and perform multiple types
of search queries. We collect the search queries by performing web
crawling. Then we use these queries to search summarized data
as well as the long dataset and retrieve results and ranks of the
documents. On the obtained search results we perform evaluations
to compare the effect of summarization. Some evaluation metrics

Figure 1: Dataset

that we plan to compare are precision, recall, performance of our
search engine in terms of speed.

2 BACKGROUND
2.1 Dataset
As mentioned earlier, we use Wikipedia dataset from Kaggle [].
This dataset is of size 8GB and has over 6.1 million documents.
The dataset has 3 fields doc_id, doc_title, doc_description. The
doc_description filed contains unstructured data. This unstructured
data has lot of redundant information. Fig(1) shows the format of
the dataset.

2.2 Queries
Normally, we use 2 types of queries with a search engine, Trans-
actional and Information Search queries. In Transactional queries,
user searches for a generic search term, eg: List of popular car
brands.
For Information queries, user looks for a specific key-word results.
eg. BMW. In our project, we focus on the latter queries. To create
a diverse dataset for queries, we used Wikipedia API[1] for gen-
erating random queries. Then, we used the queries and used the
python Wikipedia package to get the relevant Wikipedia search
results for the specified query. We generated a diverse and topic
agnostic query-set for around 1000 documents. This also contained
some terms and Wikipedia pages which were deprecated, so we
ignored them when training on our corpus.

2.3 Evaluation metrics
The evaluation metrics of a system depends on the use-case for
the specific system. Our system focuses on the balance between
speed and performance of the system. We use precision and recall
parameters to judge the quality of our results. The other parameter
which we used was the speed in fetching the responses of our
queries.

3 TEXT SUMMARIZER
In Natural Language Processing (NLP), text summarization has a
huge impact on human life. In the present era where we can access
a lot of papers, e-books and articles online, impact of text sum-
marizers in publishing industry, investing time to read an article



mindfully is not an option, given the time constraints[2]. Further-
more, with the rising number of articles being produced and the
digitization of printed media articles, keeping track of the growing
number of web articles has become extremely difficult. This is why
we need text summarization as it aids in shortening lengthy texts.

Text summarization in NLP is the process of creating summaries
from large volumes of data while maintaining significant informa-
tional elements and content value. The language of the summary
should be concise and straightforward so that it conveys the mean-
ing to the reader. As per Statistics, by 2025, the total amount of data
created, recorded, copied, and consumed worldwide is expected to
exceed 180 zettabytes. Most of this text data needs to be minimized
to more straightforward, concise summaries containing essential
details to browse and analyze them more easily. There is a high de-
mand for machine learning algorithms that can quickly summarize
lengthy texts and offer accurate insights. This is precisely where
text summarization comes into the picture.

Text summarization is beneficial for several NLP tasks, including
text classification, legal text summaries, news summaries, generat-
ing headlines, etc. Let us further look into the key reasons behind
the growing demand for Text Summarization. Text Summarization
is beneficial in the following scenarios:

• Shorter reading time.
• Provides effective search results and speeds up search en-
gines.

• Manual summarizationmethods can generate biases whereas
automatic summarization tools are much faster and efficient.

• Business companies can enhance user experience and can
enhance the volume of texts they can handle.

There are two types of text summarization methods - Extractive
summarization and abstractive summarization.

3.1 Extractive Summarization
In extractive summarization, we extract the essential and impor-
tant words from the document. Combine these words to produce a
meaningful summary. Extractive summarization use scoring func-
tions to rank the relevancy of phrases or words[2]. This scoring
function also considers to keep the meaning of the document in-
place without changing the meaning of the document drastically.
LexRank, Luhn, LSA etc are some algorithms implemented using
python libraries Gensim or Sumy for extractive summarization.

Here’s an example of how extractive text summarization works-
Original text - Eric and Walt attended a college party in San

Francisco around 9pm. They had fun at the party and lost track of
time. They could not return back home and had to stay over.

Summarized text - Eric and Walt attend party San Francisco Lost
Track of Time Stayed over.

3.2 Abstractive Summarization
Abstarctive summarization focuses on the crucial information in
the original text and creates a new set of sentences for the sum-
mary. This new sentence will always not be the part of source text,
It is altered. Abstractive summarization is completely different from
extractive summarization. Extractive summarization generates sum-
mary based on the original text whereas abstractive summarization
works well with deep learningmodels like the seq2seqmodel, LSTM,

Figure 2: TextRank approach

etc., along with popular Python packages (Spacy, NLTK, etc.) and
frameworks (Tensorflow, Keras)[2].

Here’s an example of how abstractive text summarization works-
Original text- Eric and Walt attended a college party in San

Francisco around 9pm. They had fun at the party and lost track of
time. They could not return back home and had to stay over.

Summarized text- Eric and Walt attended party in San Francisco,
they lost track of time and stayed over.

3.3 Our Implementation
We use Extractive Summarization algorithm called as TextRank[3].
TextRank is a similar algorithm to pagerank but instead of pages,
we rank sentences in documents. It is a graph-based ranking model
for text processing which can be used in order to find the most
relevant sentences in text and also to find keywords. (Fig 2).

• The first step involved fetching the text contained for each
document from the dataset.

• In the next step, we find vector representation (word em-
beddings) for each and every sentence in the document. For
creating a network of vectors, we used the pre-trained model
of Wikipedia 2014 + Gigaword 5 from GloVe (Global Vectors
of Word Representation)

• Then we find similarities between sentence vectors using
cosine similarity and are stored in a matrix.

• The similarity matrix is then converted into a graph, with
sentences as vertices and similarity scores as edges, for sen-
tence rank calculation.

• Finally, a certain number of top-ranked sentences(in our case
5) form the final summary for each document.

4 SEARCH ENGINE
Our search engine is built using Elasticsearch. Elasticsearch is a
distributed search and analytics engine. Elasticsearch is built on
Apache Lucene. Elasticsearch is a document oriented database, and
in the present day several companies such as Slack, Uber, Udemy,
Instacart and so on use Elasticsearch as search engine and analytics
engine. Elasticsearch uses Okapi BM25 as their similarity scoring
function. BM25 similarity function is chosen over TF-IDF scoring.
BM25 is more than a term scoring method. It scores the documents
with relation to query. Whereas TF-IDF is a term scoring method
and is incorporated in a document scoringmethod using a similarity

2



measure like cosine similarity. BM25 is more robust than TF-IDF
BM25 has its own version of TF-IDF in its underlying algorithm.
Okapi BM25 takes into consideration the document length and term
frequency saturation. Words that appear 5-6 times in a document
have more value than the words that appear once or twice, but the
terms that appear 20 times have almost the same value as the terms
that appear 100 times or more. That is BM25 takes into account the
most commonly used words and normalizes its score. So even if the
stop words are not removed, they are taken care of by Okapi BM25.
Some search algorithms that we use are explained below.

4.1 Function Score
The function_score allows us to modify the score of documents that
are retrieved by a query[4]. This is useful if, for example, a score
function is computationally expensive and it is sufficient to compute
the score on a filtered set of documents. We can define one or more
functions that compute a new score for each document returned
by the query. We can weigh the query parameters differently, for
example while searching, if the text is present in title, we weigh
that document more than the text present in the description part
of the document. Function score has score_mode parameters in
which we can specify how the scores need to be calculated. Several
functions such as sigmoid, logarithmic, mean, multiply are available
to combine the scores of the documents.

4.2 Fuzzy Search
Fuzzy query returns the documents that contain similar terms as
compared to search query text[5]. The similarity is compared by
using the Levenshtein edit distance. The Levenshtein distance is a
string metric for measuring the difference between two sequences.
Informally, the Levenshtein distance between two words is the
minimum number of single-character edits (insertions, deletions
or substitutions) required to change one word into the other. Edit
distance is the number of characters needed to change one term to
another. The change in character maybe[5]:

• Changing a character (box→ fox)
• Removing a character (black→ lack)
• Inserting a character (sic→ sick)
• Transposing two adjacent characters (act→ cat)

To find similar terms, the fuzzy query creates a set of all possible
variations, or expansions, of the search term within a specified edit
distance. The query then returns exact matches for each expansion.

4.3 Intervals Search
The intervals query uses a set of matching rules. These rules are
then applied to terms from a specified field[6]. These intervals can
be further combined and filtered by parent sources. The matching
rules offered by elastic are fuzzy rules, match rules, wildcard rules,
all of rules and any of rules. These rules are applied on the field
we want to perform our search. The wildcard rule matches terms
using a wildcard pattern. Some wildcard patterns are *, ?, ^.

This pattern can expand to match at most 128 terms in Elastic-
search. The all_of rule returns matches that span a combination
of other rules[6]. The any_of rule returns intervals produced by
any of its sub-rules. We use fuzzy rules that return results within

Figure 3: Auto-complete search results for query "Wickyl"

the edit distance and wild card rules to match the query with a
wildcard pattern inside all of rule.

4.4 Additional Feature
Auto-complete feature:

Elasticsearch offers full text searches. So we have added an auto-
complete feature for our search engine to enable searches for partial
search queries as well. We use a custom analyzer for documents as
well as queries. The analyzer tokenizes the text as an edge_ngrams
with a minimum_ngram is 2 and maximum edge_gram is 7. The
edge n-gram tokenizer first breaks text down into words whenever
it encounters one of a list of specified characters, then it emits
N-grams of each word where the start of the N-gram is anchored
to the beginning of the word. Example of an edge n gram tokenizer
for “Hello world” looks like this. [H, He, Hel, Hell, Hello, w, wo,
wor, worl, word]. So using an edge n gram tokenizer by specify-
ing minimum and maximum n grams, we build an auto-complete
feature for queries. Here is an example of auto-complete search in
our project. We make a search using the partial text “Wickyl” as
our query for title. We receive these search results. As you can see
the results contain auto-complete and fuzzy search responses. Fig 3
shows the results for query "Wickyl".

5 EXPERIMENTAL RESULTS
5.1 Precision
The precision of a system is defined as the ability of the engine
to retrieve relevant documents. It os more formally given as the
fraction of documents which are relevant from the overall retrieved
documents. We used theWikipedia API retrieved documents for the
search query to form the set of relevant documents. We limited the
search to 30 documents from the Wikipedia API, ie. we compared
our results to the top 30 relevant documents. Then we compared the
documetns from our respective indexes of summarized data-set and
full document data-set to find the precision of the two systems. As
seen in Fig 4 and Fig 5 5 4, the precision of the summarized queries
for Functional score algorithm falls by a factor of around 30% as

3



Figure 4: Functional score algorithm on whole document
data-set

Figure 5: Functional score algorithm on Summarized data-set

compared to the full size document as we lose information when
summarizing the documents. The average document size in the
Wikipedia dataset is aroound 20-25 sentences. We have summarized
the document to 5 sentences per document, which means we might
lose valuable search information.

Similarly, for fuzzy logic queries 6 7, we see a drop in precision by
around 40% for the queries on summarized search engine due to the
loss of the data in the documents. But the summarized search engine
still shows potential to make some changes in the summarization
algorithm(we plan to use auto-encoder decoder techniques) for
better results. We plan to check the results for the text summary of
size 10 rather than 5 to test the robustness of the search.

5.2 Speed of execution
Here are the run-time results of all the search algorithms for original
data and summarized data.

• function_score search:
For original text in fig 8, the search time or program run-time
is 14 ms. But when we perform same search algorithm on
summarized text, see fig 9. We observe that there is a drastic
improvement in performance.

Figure 6: Fuzzy logic algorithm on whole document data-set

Figure 7: Fuzzy logic algorithm on Summarized data-set

Figure 8: Function_score for original data

Figure 9: Function_score for summarized data

• fuzzy_search:
The above results is same even for fuzzy_query. There per-
formance of the search engine in terms of speed is positive.
This can be observed in terms of fig 10 and fig 11

• intervals_query search:
But for the intervals_query, the performance is increased
in summarized data compared to original data. This can be
observed in fig 12 and fig 13

4



Figure 10: Fuzzy_search for original data

Figure 11: Fuzzy_search for summarized data

Figure 12: Intervals_query search for original data

Figure 13: Intervals_query search for summarized data

6 CONCLUSION
In terms of speed, all the 3 algorithms show improvement in speed.
So search engine that uses summarized text to index the data will
gain considerable speed. The precision of the system decreases for
the summarized documents but we think it shows enough evidence
to form a well trained model to create a robust summary for 5-10
sentences each. The precision value falls by a value of 30% and
40% for the functional score and fuzzy logic algorithm but further
studies are required to check the performance of such a system on
the well-trained summarizer.

7 FUTUREWORK
• Extend the search engine implementation to get feedback.
This feedback maybe in terms of pseudo relevant feedback.

• Implement machine learning algorithms for ranking the doc-
uments.

• Index more documents and expand the dataset.
• Get user feedback on our search engine by conducting a
survey.

• Extend our summarizer to use auto encoder and decoder.
• Implement summarizer using deep learning model.

REFERENCES
[1] python wikipedia. Python wikipedia.
[2] ProjectPro. Text summarizer intro.
[3] textRank analytics. Textrank.
[4] Elasticsearch. Elasticsearch function score.
[5] Elasticsearch. Elasticsearch fuzzy search.
[6] Elasticsearch. Elasticsearch fuzzy search.

5


	Abstract
	1 Introduction
	2 Background
	2.1 Dataset
	2.2 Queries
	2.3 Evaluation metrics

	3 Text Summarizer
	3.1 Extractive Summarization
	3.2 Abstractive Summarization
	3.3 Our Implementation

	4 Search Engine
	4.1 Function Score
	4.2 Fuzzy Search
	4.3 Intervals Search
	4.4 Additional Feature

	5 Experimental Results
	5.1 Precision
	5.2 Speed of execution

	6 Conclusion
	7 Future Work
	References

